Okadaic acid induces dephosphorylation of histone H1 in metaphase-arrested HeLa cells.

نویسندگان

  • J R Paulson
  • W A Ciesielski
  • B R Schram
  • P W Mesner
چکیده

It is shown here that treatment of metaphase-arrested HeLa cells with okadaic acid (0.15-2.5 microM) leads to dephosphorylation of histone H1. This effect is presumably due to the specific ability of okadaic acid to inhibit protein phosphatases 1 and/or 2A, because okadaic acid tetraacetate, which is not a phosphatase inhibitor, has no effect. Dephosphorylation of H1 does not occur if okadaic acid-treated cells are simultaneously treated with 20 nM calyculin A, or if the okadaic acid concentration is 5.0 microM or greater. The mechanism behind this phenomenon is not known. However, the results suggest that the chain of events leading to histone dephosphorylation may be negatively controlled by a protein phosphatase 2A, while the phosphatase which actually dephosphorylates H1 could be a protein phosphatase 1. It remains to be determined whether the phosphatase involved here is the same enzyme as that which dephosphorylates H1 at the end of normal mitosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that the endogenous histone H1 phosphatase in HeLa mitotic chromosomes is protein phosphatase 1, not protein phosphatase 2A.

Histone H1 is highly phosphorylated in mitotic HeLa cells, but is quickly dephosphorylated in vivo at the end of mitosis and in vitro following cell lysis. We show here that okadaic acid and microcystin-LR block the in vitro dephosphorylation of H1 and that they do so directly by inhibiting the histone H1 phosphatase rather than by some indirect mechanism. The concentrations of microcystin and ...

متن کامل

Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Antagonistic action of okadaic acid and 6-DMAP.

The tyrosine phosphorylation/dephosphorylation of p34cdc2 was estimated by immunoblotting with antiphosphotyrosine antibody during meiotic maturation of Xenopus oocytes. At the time of germinal vesicle breakdown (GVBD), p34cdc2 is tyrosine dephosphorylated whereas a p42 protein, which might correspond to a MAP2 kinase, becomes tyrosine phosphorylated. No modification in the level of tyrosine ph...

متن کامل

Histone H1 kinase activity, germinal vesicle breakdown and M phase entry in mouse oocytes.

Meiotic reinitiation of the mouse oocyte is characterized by a slow entry into metaphase I, beginning with germinal vesicle breakdown and ending with spindle formation. It is accompanied by a cascade of protein kinases and phosphatases increasing protein phosphorylation. The activation of histone H1 kinase and that of the mitogen-activated protein kinase p42 have been compared during spontaneou...

متن کامل

Low angle x-ray diffraction studies of HeLa metaphase chromosomes: effects of histone phosphorylation and chromosome isolation procedure

To test whether gross changes in chromatin structure occur during the cell cycle, we compared HeLa mitotic metaphase chromosomes and interphase nuclei by low angle x-ray diffraction. Interphase nuclei and metaphase chromosomes differ only in the 30-40-nm packing reflection, but not in the higher angle part of the x-ray diffraction pattern. Our interpretation of these results is that the transit...

متن کامل

Tyrosine phosphorylation of p34and p42 during meiotic maturation of Xenopus oocyte Antagonistic action of okadaic acid and 6-DMAP

The tyrosine phosphorylation/dephosphorylation of p34 was estimated by immunoblotting with antiphosphotyrosine antibody during meiotic maturation of Xenopus oocytes. At the time of germinal vesicle breakdown (GVBD), p34 is tyrosine dephosphorylated whereas a p42 protein, which might correspond to a MAP2 kinase, becomes tyrosine phosphorylated. No modification in the level of tyrosine phosphoryl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 107 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1994